Building Resiliency in the Face of Climate Change:

Exploring ways land trusts can overcome barriers and act

2022 Canadian Land Trust Summit October 26, 2022

Morgan Roblin – Conservation Science Manager, Ontario Land Trust Alliance Jenna Quinn – Program Scientist, *rare* Charitable Research Reserve Daria Koscinski – Executive Director, Thames Talbot Land Trust

Climate Change and Land Trusts

Protected areas

- High biodiversity
- High threats of habitat degradation, fragmentation and habitat loss
- Mitigate impacts
- Increase community resilience

Research on Ontario land trusts

- **Obstacles**: limited capacity, resources, and knowledge
- **Desired support**: stewardship training and guidance, sharing knowledge and experience, communications

Climate Action Working Group

Members:

- OLTA staff
- Member land trusts
- Research associates

Goals:

- Provide research, guidance and support
- Develop a platform for information sharing
- Increase public awareness of climate change

Funding & Partners:

Ontario Trillium Foundation Fondation Trillium de l'Ontario

An agency of the Government of Ontario Un organisme du gouvernement de l'Ontario

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

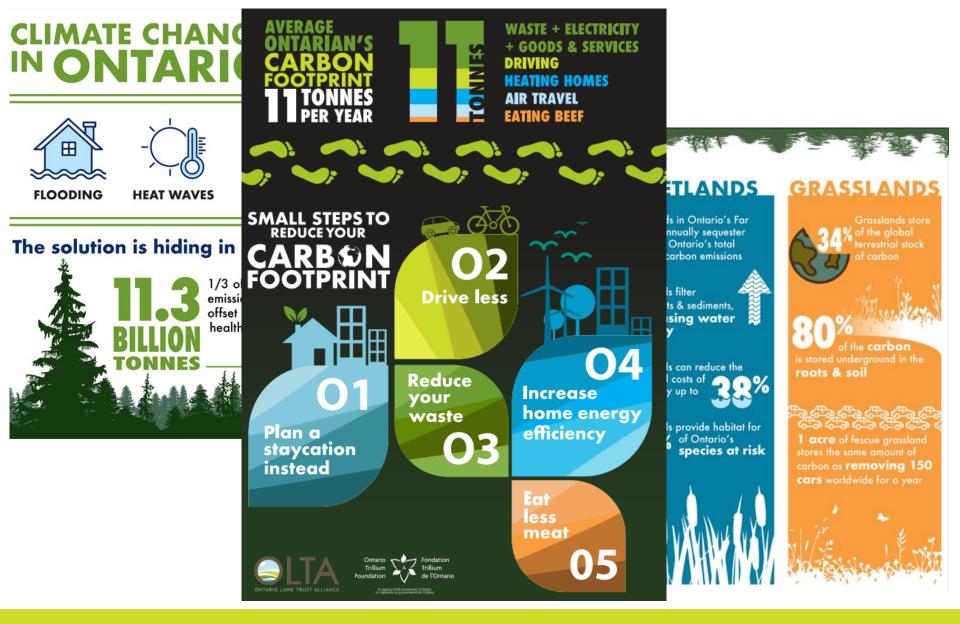
Climate Action Program Activities

2019-2020

- Communicating climate change
- Climate Vulnerability Assessment Tool development

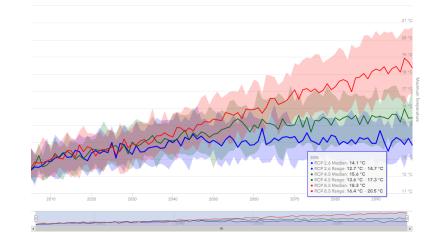
2020-2022

- Climate change adaptation series
- Analysis and recommendations
- Sharing knowledge


Communicating Climate Change

Developed climate change communications package to provide land trusts with effective consistent messaging, including:

- Long video with complimentary short videos
- Slide-deck for presentations
- Shareable infographics


Climate Vulnerability Assessment

Goals

- How do we assess vulnerability and increase resilience of conservation lands?
- How do we translate climate trends into action?

Methods

- 11 climate variables included
- 3 emission scenarios and 3 time periods
- Process based on multiple existing tools and resources

- HISTORICAL - RCP 2.6 MEDIAN - RCP 4.5 MEDIAN - RCP 8.5 MEDIAN

=

Climate Vulnerability Assessment Outcomes

• Choosing adaptation strategies using results of the assessment

Strategy 5: Climate smart restoration Description

A "fix it forward" approach to restoring functionality and adaptability to future climatic conditions. Focus on processes rather than composition and to the future not to a past that is gone (e.g., Hagerman and Chan, 2009; Lawler, 2009; Mawdsley et al., 2009; West et al., 2009).

Example Adaptation Option

Favour the natural regeneration of species that can adapt to a changing climate and are better suited to projected future conditions (Beavers et al., 2016; Mawdsley et al., 2009; Stein et al., 2014).

Remove barriers to diurnal flooding and freshwater stream flow to support appropriate inundation regimes (Stein et al., 2014; Stevens and Cadrin, 2016; US EPA, 2009).

Restore riparian vegetation along coastal foreshores to increase bank stability and reduce erosion (Haeussler and E.H., 2012; Stevens and Cadrin, 2016; van Proosdij et al., 2016).

Parker et al. 2018. Climate Change Adaptation Options for Biodiversity: Part 1. Context and Guidance Report.

Prioritizing Conservation Targets: How the Climate Vulnerability Assessment can help

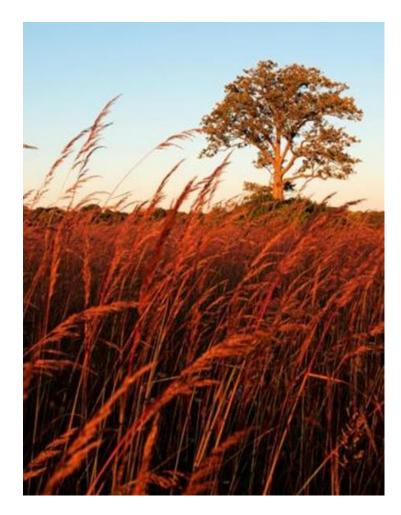
Conservation Target

Example:

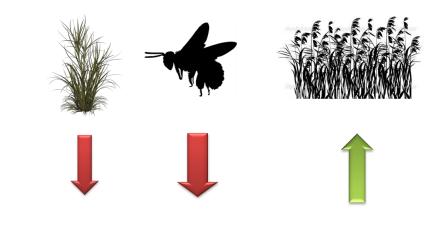
3

Cold-water tributaries

- 1 Cold-water tributary (Bauman)
- 1 Cold-water tributary (Bauman)
- 1 Cold-water tributary (Bauman)
- 2 Forested Feature (Hogsback)
- 2 Forested Feature (Hogsback)
- 2 Forested Feature (Hogsback)
- 3 Tallgrass Prairie (Blair Flats)
- 3 Tallgrass Prairie (Blair Flats)


	Conservation Target	Key Attribute	Indicator	Indicator Rating
	Example:		Cold-water fish diversity and	
	Cold-water tributaries	Indicator Species	abundance	Very Good
1	Cold-water tributary (Bauman)	Water Quality	Dissolved oxygen	Good
1	Cold-water tributary (Bauman)	Assemblage	Hilsenhoff Biotic Index	Poor
1	Cold-water tributary (Bauman)	Presence of Brook Trout	Population self-sustainability	Good
2	Forested Feature (Hogsback)	Forest Size	Forest Interior Area (ha)	Fair
2	Forested Feature (Hogsback)	Habitat Matrix & Connectivity	Minimum Corridor Width (m)	Fair
2	Forested Feature (Hogsback)	Invasive Plant Species Dominance	species in ELC communities	Good
3	Tallgrass Prairie (Blair Flats)	Size	Open space area (ha)	Very Good
3	Tallgrass Prairie (Blair Flats)	Invasive Plant Species Dominance	species in ELC communities	Poor
3				

To determine vulnerability of target, consider:


- Interaction of climate & non-climate threats
- Likelihood, size of impact, and risk of those threats
- Adaptive capacity of target

Existing threats: roadway, invasive species, housing, flooding

Climate threats: increased flooding and drought risk (extreme weather), invasive species



Bebensee Tract

- Looking at restoration of 2 acres
- One target for the area is Prairies & Savannahs
 - Current rating of "Poor"
 - Several non-climate change threats
 - Climate threats include changes in fire regime, changes in soil moisture, increased pests & diseases

- Climate threats will have mixed effects on this habitat type
- Climate threats may exacerbate other threats

Prairies & Savannahs	Effects on Habitat	Likelihood	Impact	Risk	Adaptive Capacity	Vulnerability
	Low intensity spring fires would benefit prairies					
	and savannah in reducing competition from					
	other species and maintaining open canopy.					
	But high intensity summer fires would destroy					
	plants and prevent reproduction. Latter					
Change in fire regime	scenario more likely.	Likely	Major	High	Low	High
	Prairie and savannah species are better					
Reduced soil moisture in summer	adapted to drought conditions and may expand					
and fall	their range as moisture loving species decline.	Almost certain	Minor	Moderate	Low	Moderate
	Oak wilt and other diseases may spread into					
	the region and kill off key species in savannah					
Increased pests and disease	and oak woodland habitats.	Almost certain	Major	Extreme	Low	High

- Planted native seed mix for prairie/savannah
- Sourced seeds from local and more southern populations (Pennsylvania & Kentucky)

	<u> </u>	•
Adaptation Strategy	Adaptation Option	Benefits
Increase	Expand seed collection zone for reforestation	More diverse seedling populations
evolutionary	and restoration from the local gene pool to	increase the potential for
potential	include genes from other zones. Additionally,	populations to adapt to climate
	collect seeds produced during "bad" years as	change
	well as "good" years since seed produced during	
	"bad" years, such as drought, may have	
	important genetic variation that could help the	
	species adapt to climate change.	
i	i	i

July 2021 - less than 2 years after planting

Credits: C. Johnson & D. Koscinski

Break Out Activity (15 minutes)

-Select a conservation target -List existing threats -Consider how climate change will impact those threats or introduce new threats -Discuss appropriate climate actions

Climate Adaptation Webinar Series

- Three-part webinar series featuring international, national, and local experts
- Four-part workshop to provide hands on experience using the assessment tool
- Analyzed sessions to identify challenges and opportunities to make recommendations

Results

- 65 individuals attended the 3 webinars
- 17 organizations participated in workshops
- 24 surveys completed by 18 organizations

What We Learned

Challenges/Barriers

- Capacity:
 - Funding constraints
 - Lack of and overworked staff/volunteers
 - Skills and technical knowledge base
 - Lack of property and ecological knowledge
 - Climate change low priority due to competing demands
- Perceptions/philosophy about climate change
- Geographic and demographic factors

What We Learned Facilitators

- Willingness to act on climate change risks
- Positioning climate change as opportunity to discuss value of land conservation
- Making use of standard frameworks (e.g. CCVAT)
 - Express varied experiences in the same terms to reduce variability/confounding factors
 - Decision making based on clear and explicit assumptions and relationships
- Sharing resources
 - Increasing communication between Land Trusts
 - Access to literature/background studies

Recommendations

1: Shared resources and collaboration

- Take advantage of resources and collaborations that already exist so you don't have to do everything yourself
- Sharing of resources and coordination through larger organizations can support land trusts with fewer resources
- A community of practice can lead to stronger communication and greater collaboration among land trusts

Recommendations

2: Small tweaks

- Reframe work already being done
- Emphasize how Land Trusts are part of climate change mitigation and adaptation solutions
- Focus on resilience of ecosystems

3: Shifting management styles

- Shifting to more active management style to be prepared for climate change effects
- Focus on processes rather than species or habitats
- Policy framework to support decisions around climate change actions

What's Next?

Big things are coming!

- Opportunity to highlight the contributions of land trusts in meeting climate change targets
- Manuscript on this project is in development
- Community of Practice in the works!
- Join us!

How to Contact Us:

Morgan Roblin Conservation Science Manager Ontario Land Trust Alliance <u>morgan.roblin@olta.ca</u> 416-588-6582

Daria Koscinski Executive Director Thames Talbot Land Trust <u>daria.koscinski@ttlt.ca</u> 519-858-3442 Jenna Quinn Program Scientist *rare* Charitable Research Reserve jenna.quinn@raresites.org 519-650-9336 x111

